Asymptotic stability of relaxation shock profiles for hyperbolic conservation laws
نویسنده
چکیده
This paper studies the asymptotic stability of traveling relaxation shock profiles for hyperbolic systems of conservation laws. Under a stability condition of subcharacteristic type the large time relaxation dynamics on the level of shocks is shown to be determined by the equilibrium conservation laws. The proof is due to the energy principle, using the weighted norms, the interaction of waves from various modes is treated by imposing suitable weight matrix. r 2003 Elsevier Science (USA). All rights reserved.
منابع مشابه
Asymptotic Stability of Relaxation Shock Pro les for Hyperbolic Conservation Laws
This paper studies the asymptotic stability of traveling relaxation shock prooles for hyperbolic systems of conservation laws. Under a stability condition of subcharacteristic type the large time relaxation dynamics on the level of shocks is shown to be determined by the equilibrium conservation laws. The proof is due to the energy principle, using the weighted norms, the interaction of waves f...
متن کاملExistence and asymptotic stability of relaxation discrete shock profiles
In this paper we study the asymptotic nonlinear stability of discrete shocks of the relaxing scheme for approximating the general system of nonlinear hyperbolic conservation laws. The existence of discrete shocks is established by suitable manifold construction, and it is shown that weak single discrete shocks for such a scheme are nonlinearly stable in L2, provided that the sums of the initial...
متن کاملStability of Jin-xin Relaxation Shocks
We examine the spectrum of shock profiles for the Jin-Xin relaxation scheme for systems of hyperbolic conservation laws in one spatial dimension. By using a weighted norm estimate, we prove that these shock profiles exhibit strong spectral stability in the weak shock limit.
متن کاملRelaxation Limit for Piecewise Smooth Solutions to Systems of Conservation Laws
In this paper we study the asymptotic equivalence of a general system of 1-D conservation laws and the corresponding relaxation model proposed by S. Jin and Z. Xin (1995, Comm. Pure Appl. Math. 48, 235 277) in the limit of small relaxation rate. It is shown that if the relaxation system satisfies the subcharacteristic condition and the solution of the hyperbolic conservation laws is piecewise s...
متن کاملNonlinear stability of degenerate shock profiles
We consider degenerate viscous shock profiles arising in systems of two regularized conservation laws, where degeneracy here describes viscous shock profiles for which the asymptotic endstates are sonic to the associated hyperbolic system (the shock speed is equal to one of the characteristic speeds). Proceeding with pointwise estimates on the Green’s function for the linear system of equations...
متن کامل